About an hour’s drive north of Idaho Falls, off a nondescript two-lane road, you’ll find a US Navy installation. This surprises some – why a navy base out here hundreds of miles from water? Actually part of the Atomic Energy Commission’s Idaho National Engineering Laboratory (now run by the Department of Energy), the site also hosts the Naval Prototype Training Unit and is where some of the sailors slated to be the next generation of naval nuclear power operators come to train. There’s a similar facility somewhere out east – Groton, Connecticut, I think. The Idaho NPTU was the first, though.
INEL has a bit of history, at least from a nuclear reactor standpoint, if not from the exploits of the sailors who passed through. It was the site of an experiment to test the safety systems designed to control a full core meltdown. One of the test reactors was actually subjected to an intentional meltdown to see what would happen. We learned a lot from that, I suppose. A less happy incident took place not too long before I got there. Some workers mucking about with the SL1 reactor apparently tried to get one of the control rods unstuck by manually pulling it out from the top. They were successful, but a little too much so – the rapid extraction of the rod caused a local prompt criticality, the water in the rod channel flashed to steam and forcefully ejected the control rod out of the core, impaling one of the workers. He died, of course, as did a few others from radiation exposure. Or so they say.
I was stationed there in the winter of 1975 and ’76, having completed the classroom part of my nuclear training at the Mare Island Naval Base in Vallejo, California during the previous six months. Like the others sent to this frozen outpost, I would learn on a real reactor what they had taught me on paper at Mare Island. NPTU had three prototype reactors – actual, functioning power plants that were designed to simulate naval engineering spaces. Mine was called S1W: it was the first (1) submarine (S) prototype built by Westinghouse (W).
S1W was designed to resemble a fleet submarine power plant – it was housed in a ‘hull’ and was the same size and power as a real sub’s reactor. Kinda cool, actually. They also had one patterned after an aircraft carrier plant, the USS Enterprise’s, I believe. By the luck of the draw, I was slotted for S1W.
We lived in town, not on the base. I chose Idaho Falls for some reason long lost in my memory but could well have decided on Pocatello, Blackfoot or another nearby town if I wanted. Most of us lived in Idaho Falls – it was the biggest and the closest to the base. That was important because to get there, you had to ride the bus and the further away you lived, the longer the ride. Time was precious to us, we were later to learn.
Idaho Falls has enough Mormons in it that you’d think you were in Utah, which is not too far away. Weird place to live. We called it Idiot Flats. It was picturesque, though. Nice river running through town and the nearby mountains were great. But the best part was nearby Yellowstone National Park. I must have gone there half a dozen times in the six months I was in Idaho.
I stayed in a two bedroom apartment with Charlie, a friend from Mare Island. I forget his last name, it might have been Roberts. Nice guy, easy to get along with. Between him and Steve Roquemore, we were hanging-out buddies, although we had many other friends too. A close-knit group of guys, I guess, which was understandable because we had all just gone through a pretty grueling classroom phase at Mare Island. Steve was a qualified pilot and he and I went up once in a Cessna and flew around the Grand Tetons. I got to fly the plane some.
Idaho was a bit of a coming out for me. I was only 20 years old, although I had been in the navy two years now (we nukes got a LOT of training). When I arrived in Idaho, I was still a bit excited about being in the navy and being a nuke. I had the great adventure to look forward to. But by the time I left, I was disillusioned and regretted my enlistment. It wasn’t any single event that changed my attitude, and to be honest, I’m now not exactly sure why it changed. But change it did. There was that ‘incident’ at S1W, to be sure, but I’ll get to that.
Despite being a rather backwater town, Idiot Flats offered plenty of opportunity for us sailors to get into trouble. Lots of drinking, shooting pool, chasing women. Wait, did I just say chasing women? Me? Yep, it happened although not very successfully. One girl – a Mormon – wanted to marry me, but I knew it was just to get out of Idaho. Still, she was nice and I had fun with her for a while. Come to think of it, after I turned her down, so did Charlie and Steve. Poor girl was really desperate to get away.
It snows in Idaho. It snows a lot. During a period of a few weeks, I couldn’t even get into my car. Hell, I could hardly find it – it was just a vague mound in the parking lot and I wasn’t sure which mound. But some of the others had trucks and such that did better in the snow, so I didn’t really need the car. And, as I said, the bus took us to ‘work’. That bus trip was brutal some days, waiting at a bus stop before sunrise when the temperature is minus 2000 Fahrenheit and the wind’s howling. Brrrr. Bad place for a lizard.
I had a 1972 Chevy Vega GT, which I bought in San Francisco after I got the idea in my head that my previous car, a 1967 four-door Chevelle, wasn’t reliable enough to make it in Idaho. Strange notion, because the Vega was notoriously unreliable, in general. Fortunately, mine wasn’t. It was a stick shift, though, and the Chevelle was an automatic. I learned to drive the stick on my own and on the streets of San Francisco.
The Chevelle was great. I bought it off a small lot during my previous time in SF when I was stationed at Treasure Island, located in the middle of SF bay. The car dealer probably saw me coming – another wet behind the ears sailor. Because it had bench seats, a bunch of us could pile into it to see games at Candlestick Park or the Oakland Coliseum. But the Vega did OK in Idaho, at least when it wasn’t under ten feet of snow. I took it to Hawaii where I eventually traded it in on a 1971 Datsun 240Z, which I often wax nostalgic over.
But the Idaho winter was really bad, especially for driving. I remember one time Charlie and I helping a guy (a fellow sailor but not one of my buddies) get his car unstuck in a virtual blizzard. He was grateful so we went to his place for a celebratory drink. Anti-freeze, he called it. We each were poured a glass of whiskey that must have been four inches tall. As I am today, I was a lightweight with alcohol and normally avoided hard liquor. But drink it I did, with the predictable result.
At the NPTU, we spent some time in classrooms, but the emphasis was on ‘qualifying’ on the reactor. I was a reactor operator, meaning that I was designated to operate the reactor control panel. But because we cross-trained on everything, I had to become proficient at the electrical and mechanical stuff, too. It was a bit of a competition. See, the promise was whoever qualified first would get their choice of duty station in the fleet when it was over. Quite an incentive, because the USS Eisenhower – an aircraft carrier – was due to be commissioned soon and our class would make up a lot of the crew. Nobody wanted to be on a carrier; there had been a lot of trouble on them since the end of the war. Violence, race riots, bad stuff – they were like floating depressed cities. I qualified first in my class and chose a ballistic missile submarine out of Guam. Had to pass the psyche evaluation for that first, though.
So we learned how to be good nukes – how to operate the plant during all sorts of conditions and disasters. We’d be assigned watches at the various stations along with an instructor and they’d throw all kinds of crap at us – things breaking, reactor freaking out, pipe ruptures, whatever. It wasn’t too bad, but some of the guys got a little behind in their quals. If you got too far, you found yourself restricted to base and on extended hours.
As I said, I qualified first, so along with my guaranteed choice of duty station, I was also the first guy in my class who could stand watch by himself without an instructor. One of the stations they put me on was one that trainees didn’t do because it wasn’t something that you’d find on a real submarine – the Water Brake, aka The Ocean.
A navy reactor plant performs two basic functions: it provides electric power for everything on board, and it turns the propeller. Because a submarine changes depth and goes into water that varies in temperature considerably, the density of the water is quite variable and that affects the propeller’s ability to drive the boat. One really big, negative effect is cavitation. The spinning propeller creates a zone of low pressure on the trailing edge of the blades. With enough blade velocity, that pressure can drop low enough such that the water forms vapor bubbles – it boils. After the blade passes, the pressure recovers and the bubbles collapse. This process is called cavitation and it is actually quite noisy and can be picked up on a sonar easily from a distance. Pumps experience this phenomenon as well and is one of the key design criteria for sizing fluid systems. Extended periods of cavitation can ruin a pump impeller.
The throttleman (the guy who controls the steam to the main engine turbines and thus the propeller shaft speed) on a boat is trained to avoid cavitation. Don’t want to give away the position of the submarine to the Commies, after all. Part of the training is knowing and sensing the water density. He will keep and eye on the water temperature and the boat’s depth (there’s an outside water temperature and a depth gauge right next to him on a submarine) and open the throttles more slowly if the water’s less dense. He can tell by a sudden increase in shaft speed if the prop cavitates. Also, the sonar operator will pick it up and relay it to the captain who will quickly call aft and scream at the engineering watch officer. Cavitation is bad news.
But in Idaho, there is no ocean, so what’s the big deal? The deal is that we needed to be trained to deal with an actual ocean so they designed and installed a contraption on the end of the propeller shaft that had the ability to simulate water density changes. Basically, it provided a variable drag on the shaft in place of where the propeller would be and would cavitate like a real propeller, too. The Water Brake operator kept track of the “depth” changes the watch officer ordered and adjusted the water density to suit. It was a cool watch station – not much to do (which was really good back then) and no pressure, so to speak. But mostly, I stood watches inside the plant, like on the RPCP (reactor plant control panel).
First watch on the RPCP, I’m handed a list of the day’s drills (planned ‘emergencies’). Before I was qualified, my instructor would get the list and I’d be in the dark. Now, I was basically just filling up a watch billet while the other guys not yet qualified still had to do their stuff. As RPCP operator, I still had to do what was required to respond to the drills. And I was expected to know what that was now.
One of the drills was a large coolant leak from one of the loops and we’d be isolating it and going to single loop operation. No problem, I could do that and I had time to look up the procedure to refresh myself anyway. It called for systematically isolating the various subsystems off the main coolant loop in hopes of isolating the leak. I knew of course that that wasn’t going to get it, because the ‘leak’ was in one of the big loop pipes and I’d end up shutting the main coolant cutout valves for that loop.
But what I didn’t know, and they didn’t tell me, was that there was a subtle difference between the actual coolant leak procedure and the one to be used for drills. The difference was the presence of what was called the Hot-Loop Test Facility. The HTF was something connected to one of the loops that sampled the coolant which was analyzed in ways we never were told or cared about. It was an AEC research facility. Because it wasn’t part of a real sub reactor plant, it was to be regarded as not existing. But, if there was an actual coolant leak, it had to be considered as a source of the leak, too. What I didn’t know was that isolating it ruined whatever experiments were running with it and the AEC scientists would get majorly pissed.
As I said, they didn’t tell me. So when the drill started, I followed procedure and began isolating systems. During an emergency, you don’t ask permission to do stuff – you just do what you’re trained to do. I got to the HTF, announced that I was isolating it and shut the valves. About then I noticed that every non-trainee except myself was looking horrified and the watch officer immediately canceled the drill and ordered me to open the HTF valves. It was too late, of course. There would be pissed off scientists showing up real soon.
I got to talk with the ‘black box’ right after that with a couple of mysterious naval investigators present. They wanted to crucify me. Nobody present stood up for the fact that I was just following procedure and wasn’t told not to shut the HTF valves. The watch officer, a total dickhead, was particularly slimy in shifting the blame to me.
Eventually, they realized they couldn’t pin the blame on me despite their best efforts, But that scarred my naval career, in my mind. What happened to standing up for your team members? What happened to accountability? I may not have realized it right then, but after that, I never entertained another thought of re-enlisting in the navy.
I left Idaho not long after, never to see most my classmates, like Charlie and Steve, again. I was off to new adventures in Guam, Pearl Harbor and the vast Pacific Ocean.